Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development.

نویسندگان

  • Youssef Zaim Wadghiri
  • Jeffrey A Blind
  • Xiaohong Duan
  • Clement Moreno
  • Xin Yu
  • Alexandra L Joyner
  • Daniel H Turnbull
چکیده

Given the importance of genetically modified mice in studies of mammalian brain development and human congenital brain diseases, MRI has the potential to provide an efficient in vivo approach for analyzing mutant phenotypes in the early postnatal mouse brain. The combination of reduced tissue contrast at the high magnetic fields required for mice, and the changing cellular composition of the developing mouse brain make it difficult to optimize MRI contrast in neonatal mouse imaging. We have explored an easily implemented approach for contrast-enhanced imaging, using systemically administered manganese (Mn) to reveal fine anatomical detail in T1-weighted MR images of neonatal mouse brains. In particular, we demonstrate the utility of this Mn-enhanced MRI (MEMRI) method for analyzing early postnatal patterning of the mouse cerebellum. Through comparisons with matched histological sections, we further show that MEMRI enhancement correlates qualitatively with granule cell density in the developing cerebellum, suggesting that the cerebellar enhancement is due to uptake of Mn in the granule neurons. Finally, variable cerebellar defects in mice with a conditional mutation in the Gbx2 gene were analyzed with MEMRI to demonstrate the utility of this method for mutant mouse phenotyping. Taken together, our results indicate that MEMRI provides an efficient and powerful in vivo method for analyzing neonatal brain development in normal and genetically engineered mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divalent metal transporter, DMT1: a novel MRI reporter protein.

Manganese (Mn)-enhanced MRI (MEMRI) has found a growing number of applications in anatomical and functional imaging in small animals, based on the cellular uptake of Mn ions in the brain, heart, and other organs. Previous studies have relied on endogenous mechanisms of paramagnetic Mn ion uptake and enhancement. To genetically control MEMRI signals, we reverse engineered a major component of th...

متن کامل

Magnetic Resonance Imaging Modalities with

Abbreviations: BBB: Blood Brain Barrier; Ca: Calcium; CT: Computed Tomography; EM: Electro-Magnetic; EMA: European Medicines Agency; FDA: (U.S.) Food And Drug Administration; Fmri: Functional Magnetic Resonance Imaging; Gd: Gadolinium; GI: Gastro-Intestinal; IV: Intra-Venous; Mn: Manganese; MEMRI: Manganese-Enhanced MRI; Mn-DPDP: Chelated Manganese Nanoparticles; MRA: Magnetic Resonance Angiogr...

متن کامل

Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI).

Dynamic manganese-enhanced magnetic resonance imaging (MEMRI) detects neuronal activity based on the passage of Mn(2+) into active neurons. Because this mechanism is independent of any hemodynamic response, it is potentially ideal for pharmacological studies and was applied to investigate the acute CNS effects of cocaine in the rat. Dose-dependent, region-specific MEMRI signals were seen mostly...

متن کامل

Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations.

Manganese-enhanced MRI (MEMRI) is being increasingly used for MRI in animals due to the unique T1 contrast that is sensitive to a number of biological processes. Three specific uses of MEMRI have been demonstrated: to visualize activity in the brain and the heart; to trace neuronal specific connections in the brain; and to enhance the brain cytoarchitecture after a systemic dose. Based on an ev...

متن کامل

Spatial learning and memory impairments are associated with increased neuronal activity in 5XFAD mouse as measured by manganese-enhanced magnetic resonance imaging

Dysfunction of neuronal activity is a major and early contributor to cognitive impairment in Alzheimer's disease (AD). To investigate neuronal activity alterations at early stage of AD, we encompassed behavioral testing and in vivo manganese-enhanced magnetic resonance imaging (MEMRI) in 5XFAD mice at early ages (1-, 2-, 3- and 5-month). The 5XFAD model over-express human amyloid precursor prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NMR in biomedicine

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2004